Using models to do \& learn mathematics: the area model

Courage to Risk conference | January 30, 2015

Frederick Peck	University of Colorado	f@fapeck.com
Cynthia Ritter	Brighton 27J School District	CRitter@sd27J.org
Mark Semmler	Cherry Creek School District	Msemmler@CherryCreekSchools.org

Outcomes

Participants will:

- Explore why students struggle with math problems
- Understand the two roles that models play for students that struggle with mathematics
- Explain why the area model is a powerful model, including the types of problems and math concepts that the area model is useful for.

Why do students struggle with mathematics?

Try this problem

Bill has 36 . He shares with himself and three friends. How much does each have?

You probably had to stop and think.

You might have thought to divide 36 by 3 . You had to stop the automatic response and revert to your executive functions.

Executive Functions in Math Problem Solving

- Those elements of cognition that allow both the stop and the think parts of that wonderful habit teachers try to develop in the students with whom they work.
- Used to address novel situations

Fundamental components of EF

- Inhibitory control. Making an initial decision, sustaining attention, and pausing when automatic responses don't work.
- Working memory. Translating instructions into action plans, considering alternatives, relating one piece of information to another.
- Cognitive flexibility. Willingly entertaining alternative possibilities, changing your mind with new information, grasping unexpected opportunities.
- Language mediates the process
- Emotional panic hinders the process

What does "Stop and Think" look like when solving math problems?

A typical sequence*: FOPS

- Find the problem type.
- Organize the information in the problem using a model
- Plan to solve the problem.
- Solve the problem using the model.

What does "Stop and Think" look like when solving math problems?

A typical sequence*: FOPS

- Find the problem type.
- Organize the information in the problem using a model.
- Plan to solve the problem.
- Solve the problem using the model.

This is so important because school math has changed.

Some shifts in the Common Core Standards

- Focus on Coherence across grades
- Focus on Conceptual Understanding: seeing math as more than a set of mnemonics or discrete procedures
- Focus on Application: Using contexts to make meaning of mathematics, and using mathematics to make meaning of contexts.

The math that students are expected to learn has changed.

Standards for mathematical practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning.

The math that students are expected to do has changed.

Why it's so difficult to be an intervention specialist

Executive functioning
Teaching students to stop and think

- Inhibitory control, including initial decision, sustained attention, and pausing when automatic responses don't work
- Working memory. Translating instructions into action plans, considering alternatives, relating one piece of information to another
- Cognitive flexibility. Willingly entertaining alternative possibilities, changing your mind with new information, grasping unexpected opportunities

What students are expected to do and learn

- Make sense of problems and persevere in solving them
- Construct viable arguments
- Look for and make use of structure
- See coherence across grades
- Gain conceptual understanding
- Use contexts to make meaning of mathematics, and use mathematics to make meaning of contexts.

Using models to do

 learn mathematics
Why it's so difficult to be an intervention teacher

Executive functioning

- Inhibitory control, including initial decision, sustained attention, and pausing when automatic responses don't work
- Working memory. Translating instructions into action plans, considering alternatives, relating one piece of information to another
- Cognitive flexibility. Willingly entertaining alternative possibilities, changing your mind with new information, grasping unexpected opportunities

What students are expected to do and learn

- Make sense of problems and persevere in solving them
- Construct viable arguments
- Look for and make use of structure
- See coherence across grades
- Gain conceptual understanding
- Use contexts to make meaning of mathematics, and use mathematics to make meaning of contexts.

On the one hand...

On the other hand...

Formal mathematics

- Potentially very general
- Far removed from context

Formal mathematics

- Potentially very general
- Far removed from context

How to "connect" formal mathematics with students' informal experiences?

Informal experiences

- Contain mathematical principles
- Context-bound
- Models of a situation

"Traditional" sequence

Formal mathematics

- Potentially very general
- Far removed from context

Informal experiences

- Contain mathematical principles
- Context-bound
- Models of a situation

"Traditional" sequence

- Mathematics is disconnected from reality
- Math is seen as meaningless
- Little opportunity to participate in mathematical practices

"Discovery" sequence

Formal mathematics

- Potentially very general
- Far removed from context

Informal experiences

- Contain mathematical principles
- Context-bound
- Models of a situation

"Discovery" sequence

Better! But still...

- There is a big jump from informal experiences to formal mathematics - often too big.
- Ultimately, formal mathematics is the only tool that students have to solve problems

The "model and tool layer"

Formal mathematics

- Potentially very general
- Far removed from context

Models and tools

- Generalizable, but still retain contextual cues
- Models for mathematics

Models for mathematics...

... help students learn formal mathematics
... are tools that students can use to do mathematics

The
 area model

The area model

Pictorial representation of multiplication

Array model
3×5

Discrete, rows \& columns

Area model
31×52

Continuous, length \& width

The area model

Helps students learn mathematics

- Multiplicative reasoning
- Distributive, and commutative properties
- Multiplication and division with whole numbers, fractions, and polynomials, including traditional algorithms

Is a tool that students can use to do grade-level mathematics

Grade-level standard (3.OA.5): Apply properties of operations as strategies to multiply and divide

Task: Find the product: $4 \times 6=$ \qquad

Watch the video at: http://www.schooltube.com/video/a1033c0c8056ac32854e/

1. How is the array model helping this student learn mathematics? What does the array model reveal about multiplication?
2. How is the array model helping this student do grade-level mathematics?

Grade-level standard (3.OA.3): Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities

Task: Pasha has 50 candies to share between her and a friend. How many does each get?

> Talk with your neighbor:
> How could students use an array model to help them solve this problem?

How would the array model help students learn mathematics? What does the array model reveal about division?

Grade-level standard (4.NBT.): Multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Task: Mrs. Barton ordered 45 dozen cupcakes for the school reading celebration. How many cupcakes did she order?

Watch the video at:
http://www.schooltube.com/video/5ed75ac7fe0d1e13e332/

How many cupcakes are in 45 dozen?

1. How is this similar to the 4×6 problem in terms of the model? How is it different?

How many cupcakes are in 45 dozen?

1. How is the area model helping this student learn mathematics? What does the area model reveal about multiplication?
2. How is the area model helping this student do grade-level mathematics?

Task design continuum

Fourth grade

Mrs. Barton ordered 45 dozen cupcakes for the school reading celebration. How many cupcakes did she order?

Task Design					
Setting		Range of Numbers		Level of Support	Procedure for Direct Instruction
		$\begin{gathered} 1 / 2 \\ 1 / 3,1 / 5 \end{gathered}$	0-5	$\begin{aligned} & \text { 了 } \\ & \stackrel{y}{x} \\ & \text { in } \end{aligned}$	I do, You watch, We talk
		$\begin{gathered} 1 / 4,1 / 8 \\ 1 / 10 \end{gathered}$	0-10	$\underset{\substack{\overline{3} \\ \hline \\ \hline}}{ }$	I do, You help, We talk
		1/6	0-20		You do, I help, We talk
		1/7, 1/9	0-100		You do, I watch, We talk
			0-1000	z	You do, Someone else watches, We talk
			>1000		

Fourth grade

Mrs. Barton ordered 45 dozen cupcakes for the school reading celebration. How many cupcakes did she order?

Mrs. Barton ordered 15 dozen cupcakes for the school reading celebration. She had a student set them out on a table in rows of 12 cupcakes each. How many cupcakes did the student set out?

Fourth grade

Mrs. Barton ordered 45 dozen cupcakes for the school reading celebration. How many cupcakes did she order?

Mrs. Barton is planting a garden. Her garden has room for 12 rows with 10 plants in each row. She plants 2 rows one day and plants the rest the next day. How many plants does she plant during the two days?

Third grade

$4 \times 6=$ \qquad

Task Design					
Setting		Range of Numbers		Level of Support	Procedure for Direct Instruction
		$\begin{gathered} 1 / 2 \\ 1 / 3,1 / 5 \end{gathered}$	0-5	$\begin{aligned} & 3 \\ & \stackrel{3}{0} \\ & \underset{\sim}{\omega} \\ & \end{aligned}$	I do, You watch, We talk
		$\begin{gathered} 1 / 4,1 / 8 \\ 1 / 10 \end{gathered}$	0-10	$\stackrel{\overline{2}}{\overline{3}} \underset{\substack{a \\ \uparrow}}{ }$	I do, You help, We talk
		1/6	0-20		You do, I help, We talk
		1/7, 1/9	0-100		You do, I watch, We talk
			0-1000	z	You do, Someone else watches, We talk
			>1000	$\begin{aligned} & \frac{0}{0} \\ & \text { 号 } \\ & \text { on } \end{aligned}$	

Grade-level standard (5.NF.6): Solve real world problems involving multiplication of fractions

Task: All the pans of brownies are square. A pan of brownies costs $\$ 12$. You can buy any fractional part of a pan of brownies and pay that fraction of $\$ 12$. For example, $\frac{1}{2}$ of a pan costs $\frac{1}{2}$ of $\$ 12$.
A. Mr. Williams asks to buy $\frac{1}{2}$ of a pan that is $\frac{2}{3}$ full.

1. Use a copy of the brownie pan model shown at the right. Draw a picture to show how the brownie pan might look before Mr. Williams buys his brownies.
2. Use a different colored pencil to show the part of the brownies that Mr. Williams buys. Note that Mr. Williams buys a part of a part of the brownie pan.
3. What fraction of a whole pan does Mr. Williams buy? What does he pay?

Model of a Brownie Pan

How much of a pan is $1 / 2$ of $2 / 3$?

1. How is this similar to the other problems in terms of the model? How is it different?

How much of a pan is $1 / 2$ of $2 / 3$?

1. How does the area model help students learn mathematics? What does the area model reveal about multiplication of fractions?
2. How does the area model help students do grade-level mathematics?
3. Where is this problem on the continuum of instruction?

How might you design a problem higher and lower on the continuum that helps students use the area model?

Grade-level standard (A.SSE.3a): Factor a quadratic expression to reveal the zeros of the function it defines.

Task: Solve: $x^{2}-x-12=0$

$$
x^{2}-x-12=0
$$

Solve: $x^{2}-x-12=0=(x-4)(x+3)=0$

$x-4=0$
$+4+4$ $x=4$

1. How is the area model helping this student learn mathematics? What does the area model reveal about quadratic functions and polynomials?
2. How is the area model helping this student do grade-level mathematics?
3. Where is this problem on the continuum of instruction? How might you design a problem higher and lower on the Col that helps students use the area model?

Summary :: The area model

- Visual representation of multiplication
- Helps students learn mathematics
- Illuminates important mathematical concepts such as distributive and commutative properties
- Can help students understand traditional algorithms, from whole numbers to fractions to polynomials
- Is a tool that students can use to do gradelevel mathematics
- Allows for computational flexibility

Summary :: Task design for models

Our website

www.fapeck.com/CTR

Username: couragetorisk

 Password: couragetorisk- Slides and handouts from today
- Lots of resources for area models and other models - by teachers, for teachers

Fred - f@fapeck.com
Mark - Msemmler@CherryCreekSchools.org

